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Abstract 

Breast cancer remains one of the leading causes of death among women worldwide, with early diagnosis being crucial 

for effective treatment and survival. Traditional diagnostic methods such as mammography and biopsy, though 

effective, are often limited by human error and time constraints. Recent advances in machine learning (ML) have 

enabled the development of automated models for accurate and efficient cancer prediction. This study applies to 

Logistic Regression (LR) to predict breast cancer using clinical and histopathological datasets obtained from Kaggle 

and the University of Ilorin Teaching Hospital. The dataset was preprocessed through normalization, correlation 

analysis, and recursive feature elimination (RFE) to ensure data consistency and optimal feature selection. The data 

were divided into training (70%) and testing (30%) subsets. The model’s parameters were optimized using 

GridSearchCV, while evaluation metrics such as accuracy, precision, recall, F1-score, and Area Under the Curve 

(AUC) were employed to assess performance. The Logistic Regression model achieved an accuracy of 98.2%, 

precision of 96.9%, recall of 98.4%, and an F1-score of 97.6%. The Receiver Operating Characteristic (ROC) curve 

analysis confirmed a high discriminative capability with an AUC of 0.99, outperforming Support Vector Machine 

(SVM) and Decision Tree (DT) models under the same experimental conditions. The results validate Logistic 

Regression as a robust, interpretable, and computationally efficient model for breast cancer prediction. Its simplicity, 

transparency, and diagnostic accuracy make it suitable for deployment in clinical decision-support systems, particularly 

in low-resource settings. 
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1. Introduction 

Breast cancer diagnosis represents a critical area of application 

within modern healthcare and medical informatics, attracting 

significant research attention due to its high mortality rate and 

increasing global prevalence. As the most common malignancy 

among women, breast cancer accounts for millions of new cases 

annually, with invasive ductal carcinoma (IDC) being the 

predominant subtype (Babatunde et al., 2025a; Babatunde et al., 

2025c; Advocate Health Care, 2024; Abikoye et al., 2017). The 

complexity of breast cancer lies in its heterogeneous nature, 

encompassing various histopathological and molecular 

characteristics that challenge early detection. Recent advances in 

computational intelligence and machine learning (ML) have 

enabled the automation of diagnostic processes, providing tools 

that can analyze large datasets to detect malignancy patterns with 

high accuracy (Babatunde et al., 2024; Ogundokun et al., 2023; 

Alsabry et al., 2023). The integration of ML in this domain has 

thus become essential for enhancing diagnostic precision, 

supporting oncologists in identifying cancerous lesions at an early 

stage, and improving patient survival rates (Babatunde et al., 

2025b; Ettazi et al., 2023). 

Despite significant technological progress, several problems 

persist in breast cancer diagnosis. Conventional diagnostic 

methods such as mammography, biopsy, and cytological 

assessment often rely heavily on expert interpretation, which can 

be subjective and prone to human error (Babatunde et al., 2025c; 

Chen et al., 2023). Additionally, the manual evaluation of 

histopathological images and patient records is time-consuming 

and limited by variability in medical expertise. As a result, 

misdiagnosis and delayed detection remain common, particularly 

in low-resource healthcare systems where advanced diagnostic 

tools are inaccessible (Khozama & Mayya, 2021). Furthermore, 

the increasing complexity of medical data and the presence of 

redundant or correlated features in clinical datasets hinder 

efficient classification of benign and malignant tumors (Pokala et 

al., 2022). These issues underscore the need for automated, 

interpretable, and computationally efficient methods capable of 

improving diagnostic accuracy and minimizing clinical 

uncertainty. 

Logistic Regression was adopted as the primary technique for 

addressing these challenges, owing to its suitability for binary 

classification problems, interpretability, and computational 

efficiency (Babatunde et al., 2022; Chaurasiya & Rajak, 2022). 

The method models the probability that a given case belongs to a 

malignant or benign class based on multiple predictive attributes 

such as clump thickness, uniformity of cell size, and bare nuclei 

(Iparraguirre et al., 2023). Logistic Regression was chosen 

because it provides a direct probabilistic interpretation of 

outcomes and allows for feature significance assessment, 

enabling medical practitioners to understand the contribution of 

each diagnostic variable (Zaidi et al., 2023). In contrast to black-

box models such as deep neural networks, Logistic Regression 

maintains transparency in decision-making, which is crucial in 

medical contexts where explainability determines clinical 

acceptance (Yaqoob et al., 2023). The study incorporated 

preprocessing techniques such as normalization and feature 

selection to enhance model robustness and reduce 

multicollinearity (VanitaParmar & SaketSwarndeep, 2022). 

These steps ensured that the model remained both accurate and 

interpretable while generalizing effectively to unseen data. 

The major advantage of Logistic Regression over existing 

machine-learning techniques lies in its balance between 

simplicity, statistical rigor, and clinical interpretability. Studies 

have shown that Logistic Regression performs comparably or 

better than more complex models like Support Vector Machines 

(SVM) and Decision Trees (DT) when applied to structured 

biomedical datasets (Babatunde et al., 2022; Botlagunta et al., 

2023; Obare, 2023). While SVM and DT often require extensive 

hyperparameter tuning and may overfit small datasets, Logistic 

Regression achieves high classification accuracy with minimal 
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computational overhead (Pokala et al., 2022). Moreover, Logistic 

Regression allows clinicians to quantify the influence of each 

input variable through coefficient analysis, thereby reinforcing 

diagnostic confidence and supporting evidence-based decision-

making (Okebule et al., 2023). Unlike ensemble or deep-learning 

models that obscure internal mechanisms, Logistic Regression 

fosters model transparency, enabling medical experts to validate 

results against established clinical indicators (Isiaka et al., 2024; 

Humayun et al., 2023). 

In solving the identified diagnostic problems, Logistic Regression 

was applied through a systematic modeling pipeline involving 

data acquisition, preprocessing, feature optimization, and 

predictive analysis. The dataset, consisting of histopathological 

and morphological attributes, was cleaned, normalized, and 

divided into training and testing subsets to ensure balanced 

representation of benign and malignant cases (Nemade & Fegade, 

2023). Feature selection was conducted using recursive feature 

elimination to identify the most relevant predictors influencing 

breast cancer diagnosis (Kurian & Jyothi, 2021). Logistic 

Regression was then trained using the selected features, and its 

parameters were optimized through cross-validation and 

regularization techniques to enhance generalization (Chen et al., 

2023). Performance evaluation metrics such as accuracy, 

precision, recall, and F1-score were computed to assess the 

model’s reliability, confirming its high predictive capability in 

distinguishing malignant from benign tumors (González-Castro et 

al., 2023). This methodological integration demonstrates how 

Logistic Regression, when supported by robust preprocessing and 

parameter optimization, provides a clinically viable, interpretable, 

and efficient framework for breast cancer prediction. 

In essence, the study applies Logistic Regression to address the 

challenges of diagnostic uncertainty and data complexity in breast 

cancer prediction. The method’s advantages—including 

interpretability, computational efficiency, and high predictive 

accuracy make it an effective tool for early diagnosis, particularly 

in healthcare settings with limited resources. By leveraging 

medical datasets and rigorous validation techniques, Logistic 

Regression establishes a transparent and replicable predictive 

framework capable of enhancing clinical decision-making and 

improving patient outcomes in breast cancer management (Zaidi 

et al., 2023; Alsabry et al., 2023; VanitaParmar & 

SaketSwarndeep, 2022). 

 

2. Review of Related Work 

Breast cancer remains a major global health concern, accounting 

for a significant proportion of female mortality worldwide. 

Conceptually, it is recognized as a complex, heterogeneous 

disease influenced by multiple genetic, biological, and 

environmental factors (Advocate Health Care, 2024). The 

growing demand for early detection and accurate diagnosis has 

led to the integration of artificial intelligence (AI) and machine 

learning (ML) in breast-cancer research. The conceptual 

foundation for ML-based breast-cancer prediction lies in data-

driven modeling, where clinical and histopathological features are 

used to train algorithms capable of distinguishing between benign 

and malignant tumors. According to Alsabry et al. (2023), ML 

techniques are conceptually built around risk-factor assessment, 

where variables such as cell size, texture, clump thickness, and 

bare nuclei are quantified to estimate malignancy probability. 

Predictive analytics in healthcare aims to utilize computational 

algorithms to identify hidden patterns in biomedical data for 

evidence-based diagnosis. Ettazi et al. (2023) further 

conceptualized ML-driven diagnostic systems as intelligent 

decision-support mechanisms that combine algorithmic reasoning 

with clinical judgment to enhance medical decision-making. 

Similarly, Chen et al. (2023) described breast-cancer 

classification models as supervised-learning systems designed to 

minimize diagnostic errors and strengthen physician judgment. 

Khozama and Mayya (2021) explained that conceptualizing ML 

in cancer-risk prediction involves quantifying the influence of 

individual features to promote transparency and explainability. 

This notion aligns with the rising need for explainable AI in 

healthcare, which balances accuracy and interpretability. 

Moreover, Obare (2023) and Yaqoob et al. (2023) framed ML-

based breast-cancer diagnosis within a human-centric intelligence 

model, emphasizing collaboration between computational 

precision and clinical expertise. Conceptually, therefore, ML-

based prediction transforms traditional diagnostic approaches into 

automated, data-informed, and interpretable decision-support 

systems. 

Empirical studies have validated the performance of ML 

algorithms in breast-cancer classification and prognosis. 

Chaurasiya and Rajak (2022) empirically compared algorithms 

such as Support Vector Machines (SVM), Decision Trees (DT), 

and Logistic Regression (LR), concluding that LR provides a 

desirable trade-off between accuracy and interpretability. 

Likewise, Pokala et al. (2022) revealed that preprocessing, feature 

selection, and hyperparameter optimization significantly improve 

model reliability across various ML frameworks. Empirical 

findings from Botlagunta et al. (2023) confirmed that ML-based 

diagnostic systems can predict breast-cancer metastasis 

effectively when trained on high-quality histopathological data. 

González-Castro et al. (2023) expanded this by integrating 

structured and unstructured information from electronic health 

records (EHRs), demonstrating improved accuracy in recurrence 

prediction and patient follow-up modeling. 

In a similar study, Humayun et al. (2023) implemented deep-

learning architectures and reported high sensitivity and specificity 

in detecting risk, although they noted reduced interpretability 

compared with linear models. Iparraguirre et al. (2023) 

demonstrated that feature optimization using recursive feature 

elimination enhanced model generalization and reduced 

overfitting. Furthermore, Nemade and Fegade (2023) and 

Okebule et al. (2023) verified that Logistic Regression remains a 

reliable and computationally efficient classifier when applied to 

balanced datasets. Vanita Parmar and Saket Swarndeep (2022) 

emphasized that integrating dimensionality reduction and cross-

validation techniques improves consistency, while Vikas and 

Vishu (2021) highlighted the importance of normalization for 

reproducibility. Empirical evidence from Zaidi et al. (2023) 

reaffirmed LR’s robustness as a baseline model in healthcare 

prediction due to its simplicity, stability, and interpretability. 

Collectively, these studies underscore the practical value of ML 

particularly Logistic Regression in producing accurate, 

transparent, and computationally efficient predictive outcomes. 

The theoretical dimension of related research, summarized in 

Table 1, provides deeper insights into the conceptual 

underpinnings and methodological logic that guide model 

selection for breast-cancer prediction. The reviewed literature 

highlights various theoretical frameworks, including statistical 

learning theory, feature-optimization theory, and explainable AI, 

that support the development of predictive models. 
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Table 1: Theoretical Review of Related Studies on Breast-Cancer Prediction 

Author 

(Year) 

Dataset Model / Theory 

Applied 

Contribution Gap / Limitation 

Chen et al. 

(2023) 

Public breast-cancer 

dataset (e.g., 

Wisconsin 

Diagnostic Dataset) 

Logistic Regression; 

Statistical Learning 

Theory 

Established LR as a probabilistic 

classifier using sigmoid 

transformation and maximum-

likelihood estimation for binary 

diagnosis. 

Limited exploration of 

nonlinear relationships and 

feature interactions. 

Iparraguirre 

et al. (2023) 

Clinical diagnostic 

datasets 

Logistic Regression 

with Recursive 

Feature Elimination 

(RFE) 

Grounded model optimization in 

feature-selection and 

regularization theory to improve 

interpretability and reduce 

overfitting. 

Predictive strength affected 

by class imbalance; needs 

larger datasets for 

validation. 

Pokala et al. 

(2022) 

Comparative ML 

datasets 

Multiple ML Models 

(LR, SVM, DT) 

Provided theoretical basis for 

assessing trade-offs in 

classification, emphasizing 

parameter tuning and 

optimization. 

Did not investigate hybrid 

or ensemble theoretical 

frameworks for enhanced 

accuracy. 

Yaqoob et al. 

(2023) 

Secondary cancer-

classification datasets 

Explainable AI and 

Human-Centric 

Intelligence Theory 

Linked interpretability with 

clinical trust, advocating 

transparent predictive modeling in 

medical AI. 

Lacked empirical 

validation of 

interpretability metrics and 

real-world deployment. 

Alsabry et al. 

(2023) 

Multiple secondary 

datasets from 

literature 

Risk-Factor 

Modeling Theory 

Developed a theoretical model 

where quantifiable diagnostic 

features predict malignancy 

probability via ML algorithms. 

Did not integrate domain-

specific medical ontologies 

to improve theoretical 

accuracy. 

Humayun et 

al. (2023) 

Image-based datasets Deep Learning 

(Neural-Network 

Theory) 

Advanced theoretical 

understanding of automated 

feature extraction for cancer-risk 

prediction. 

Limited interpretability; 

computationally intensive. 

Obare (2023) Reviewed multiple 

breast-cancer datasets 

Comparative ML 

Theoretical 

Framework 

Proposed unified theoretical 

foundation for selecting diagnostic 

algorithms based on 

interpretability. 

Absent empirical testing of 

proposed theoretical 

constructs. 

Zaidi et al. 

(2023) 

Structured clinical 

datasets 

Logistic Regression 

Theoretical 

Framework 

Reinforced LR’s theoretical 

robustness, simplicity, and clinical 

suitability as a baseline predictive 

model. 

Lacked exploration of 

nonlinear or ensemble 

theoretical extensions. 

As presented in Table 2, the reviewed theories consistently 

support the use of Logistic Regression as a reliable, interpretable, 

and mathematically grounded model for breast-cancer prediction. 

Theoretical gaps identified across studies such as limited handling 

of nonlinear relationships, data imbalance, and low 

interpretability in deep-learning models provide justification for 

developing optimized Logistic Regression frameworks that 

preserve clinical transparency while improving predictive 

precision. 

 

3. Methodology 

The methodology of this study outlines the systematic procedures 

employed to develop, train, and evaluate a Logistic Regression 

model for breast cancer prediction. It describes the steps taken to 

ensure data quality, feature optimization, model reliability, and 

performance validation. The approach integrates both 

experimental and computational techniques to transform raw 

clinical and histopathological data into actionable predictive 

insights. The process began with data acquisition from verified 

medical sources, followed by preprocessing to handle missing 

values, normalize features, and eliminate redundancy. Feature 

selection techniques were then applied to identify the most 

significant predictors of malignancy. The Logistic Regression 

algorithm was chosen for its suitability in binary classification 

tasks, interpretability, and computational efficiency. The model 

was trained and validated using a 70:30 train–test split, with 

hyperparameter tuning conducted through GridSearchCV to 

optimize performance. Evaluation metrics such as accuracy, 

precision, recall, F1-score, and the Area Under the Curve (AUC) 

were used to assess predictive capability. This methodological 
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framework ensures a balance between statistical rigor, 

interpretability, and clinical relevance, providing a reproducible 

foundation for deploying machine learning models in real-world 

breast cancer diagnosis and decision-support systems. 

 

3.1  Data Acquisition 

The dataset employed in this research was obtained from the 

University of Ilorin Teaching Hospital, Nigeria, comprising 

clinical records of 684 patients diagnosed with breast cancer. 

Each record contained multiple histopathological and cytological 

features describing tumor morphology and biological 

characteristics. The data were fully anonymized to preserve 

patient confidentiality and conform to ethical standards governing 

medical research. The dataset incorporated ten diagnostic 

variables: clump thickness, uniformity of cell size, uniformity of 

cell shape, marginal adhesion, single epithelial cell size, bare 

nuclei, bland chromatin, normal nucleoli, mitoses, and a target 

classification variable denoting benign or malignant status. 

Collectively, these attributes represent the essential 

morphological and biological properties used to distinguish 

malignant tumors from benign growths. For instance, clump 

thickness and uniformity of cell size reflect the degree of cellular 

cohesion, while marginal adhesion and bare nuclei indicate 

potential loss of normal cell structure and function. Similarly, 

parameters such as mitotic rate and nucleolar prominence capture 

the degree of abnormal cellular activity typically associated with 

malignancy. 

Each patient record, therefore, encapsulated a comprehensive 

diagnostic profile that integrates cellular morphology, chromatin 

texture, and growth dynamics. This holistic representation 

provides a robust foundation for predictive modeling by allowing 

the exploration of feature interrelationships that underpin tumor 

classification. The dataset was meticulously curated to ensure 

internal consistency and to eliminate incomplete or erroneous 

entries prior to analysis. 

A sample structure of the dataset used for this experiment is 

presented in Figure 1, which illustrates the organization of clinical 

attributes and their corresponding diagnostic outcomes. This 

structured representation ensures that the dataset is both 

statistically meaningful and clinically interpretable, serving as a 

reliable input for subsequent preprocessing, model training, and 

evaluation stages.

 

 

 

Figure 1: Dataset for this experiment

3.2  System Design 

The system design for the breast cancer prediction framework 

followed a structured, modular approach that integrated data 

acquisition, preprocessing, model training, classification, and 

performance evaluation. This architecture was developed to 

facilitate a systematic progression from raw data collection to 

model deployment, ensuring that each stage contributed 

meaningfully to the accuracy and reliability of the final prediction 

model. The overall workflow of the system is depicted in Figure 

2, which illustrates the logical sequence of processes undertaken 

in the study. The design begins with the acquisition of the breast 

cancer dataset from the University of Ilorin Teaching Hospital, 

comprising clinical and histopathological features from patients 

diagnosed with breast cancer. Once the data were collected, 

comprehensive preprocessing techniques were applied to improve 

quality and analytical consistency. These procedures included 

cleaning to remove duplicates and incomplete records, handling 

missing values through mean imputation, and normalizing 

numerical attributes using z-score standardization. This ensured 

that all input features were represented on a common scale, 

preventing dominance of features with larger magnitudes and 

improving model convergence. 

Following preprocessing, the dataset was partitioned into training 

and testing subsets in a 70:30 ratio using stratified sampling. This 

approach maintained the balance between malignant and benign 

cases, thereby preventing classification bias. The training subset 

was used to construct predictive models, while the testing subset 

served as an independent evaluation set to assess the model’s 

generalization ability. Three supervised machine learning models: 

Support Vector Machine (SVM), Decision Tree (DT), and 

Logistic Regression (LR) were implemented and trained using the 

prepared dataset. Each model applied a distinct learning 

mechanism to classify tumors based on the given clinical and 

histopathological features. The SVM algorithm sought an optimal 

hyperplane that maximized class separation, the Decision Tree 

employed hierarchical decision nodes based on feature thresholds, 

and the Logistic Regression model estimated the probability of 

malignancy using a sigmoid function. 

After model construction, the classification phase involved 

applying each algorithm to the test data to predict tumor classes. 

Comparative analysis was then performed to evaluate the 
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predictive performance of the classifiers using standard metrics 

such as accuracy, precision, recall, and F1-score. The comparative 

results guided the identification of the most effective classifier for 

breast cancer diagnosis, balancing accuracy and interpretability. 

The final stage of the system design involved selecting the best-

performing classifier and preparing it for integration into 

diagnostic decision-support environments. This ensured that the 

developed model could be applied effectively in real-world 

healthcare settings to assist clinicians in early detection and 

treatment planning. The complete system design framework is 

conceptually summarized in Figure 2.

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flowchart of the Proposed Breast Cancer Prediction System 

 

3.3  Analysis of the Proposed System (Implementation) 

The implementation of the proposed breast cancer diagnostic 

system was structured as a systematic analytical framework 

integrating data preprocessing, feature optimization, model 

development, and validation. The objective was to design a robust 

and interpretable computational pipeline capable of supporting 

accurate and scalable breast cancer classification based on clinical 

and histopathological features. The complete workflow of the 

system implementation is presented in Figure 3, illustrating the 

sequential relationship among the major methodological 

components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Implementation Framework for the Proposed Breast Cancer Diagnostic System 
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3.3.1  Model Formulation 

The foundation of the proposed system lies in the Logistic 

Regression (LR) algorithm, which was adopted due to its 

interpretability, computational efficiency, and suitability for 

binary classification tasks. Logistic Regression estimates the 

probability that a tumor is malignant or benign by modeling the 

relationship between a set of independent features and the 

dependent variable. The logistic function is mathematically 

expressed in Equation (1): 

𝑃(𝑌 = 1 | 𝑋) =
1

1 + 𝑒(β0+β1X1+β2X3+⋯+β𝑛X𝑛)
                    (1) 

where 𝑃(𝑌 = 1 | 𝑋) represents the probability of malignancy, β0 

denotes the intercept, and β1 corresponds to the coefficients 

associated with each predictor X𝑖. The model parameters were 

optimized using the maximum likelihood estimation (MLE) 

technique to achieve the best fit between predicted and observed 

outcomes. Prevent overfitting and enhance model generalization, 

L2 regularization was incorporated into the cost function as 

shown in Equation (2): 

𝐽(β) = −
1

𝑚
∑[𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖)] +

λ

2𝑚
∑ β𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

                (2) 

In this expression, 𝐽(β) represents the cost function, λ is the 

regularization constant, mmm denotes the number of training 

instances, and 𝑦̂𝑖 signifies the predicted probability for each 

observation. The addition of the regularization term penalizes 

overly complex models, encouraging parameter sparsity and 

preventing multicollinearity among features. 

3.3.2  Feature Selection and Optimization 

Feature selection was employed to enhance computational 

efficiency and model interpretability by identifying the most 

relevant predictors of breast cancer diagnosis. The process began 

with correlation analysis to detect and remove highly collinear 

variables, followed by Recursive Feature Elimination (RFE) to 

iteratively identify the optimal subset of features contributing 

most to model performance. RFE operates by training the logistic 

regression model on the full set of features, ranking them 

according to their predictive significance, and progressively 

eliminating the least relevant variables. The iteration continues 

until the minimal feature subset that maintains maximal 

classification performance is obtained. A conceptual summary of 

this process is presented in Table 2. 

Table 2: Summary of Feature Selection Procedures and Methodological Roles 

Step Technique Description Methodological Purpose Expected Outcome 

1 Correlation Analysis Measures pairwise correlation 

between variables 

Removes redundant and 

collinear features 

Reduced feature 

redundancy 

2 Recursive Feature 

Elimination (RFE) 

Iteratively removes least 

significant features 

Identifies optimal subset of 

predictors 

Enhanced model 

interpretability 

3 Normalization Standardizes feature scale using 

z-score 

Ensures uniform feature 

contribution 

Stable model 

convergence 

This methodological pipeline ensures that only statistically 

relevant and non-redundant variables are retained for model 

training, thereby improving the robustness of subsequent 

predictive modeling. 

 

3.3.3  Model Implementation and Training 

Model development and analysis were performed using the 

Python 3.10 programming environment, leveraging libraries such 

as scikit-learn, NumPy, and Pandas. The dataset was partitioned 

into training (70%) and testing (30%) subsets using stratified 

sampling to maintain class balance between benign and malignant 

cases. Model training followed an iterative optimization process 

using the gradient descent algorithm, where the cost function 

defined in Equation (2) was minimized until convergence. The 

learning rate, regularization strength, and batch size were adjusted 

through grid search hyperparameter tuning. Additionally, k-fold 

cross-validation (k = 10) was implemented to ensure 

generalization and minimize the effects of sampling variability. 

Early stopping criteria were applied to halt training once 

validation performance plateaued, preventing overfitting and 

promoting model stability. The overall training and validation 

sequence is depicted in Figure 4, which demonstrates the flow of 

model initialization, optimization, and evaluation. 
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3.3.4  System Architecture and Integration 

The implemented system was designed with modularity and 

scalability in mind, enabling seamless integration with clinical 

diagnostic workflows. Each module data preprocessing, feature 

selection, model training, and validation was independently 

structured to allow parameter modification and component 

replacement without affecting overall functionality. This 

architecture ensures reproducibility and adaptability to new 

datasets or extended feature sets. The system’s analytical design 

provides a foundation for incorporating advanced learning 

mechanisms such as ensemble modeling or deep learning 

extensions in future work. 

In summary, the implementation phase of the proposed system 

involved the development of an interpretable and computationally 

efficient framework for breast cancer diagnosis. The methodology 

combined robust preprocessing, systematic feature selection, and 

optimized logistic regression modeling to ensure accuracy, 

stability, and clinical applicability. By maintaining a balance 

between algorithmic rigor and interpretability, the system 

establishes a reproducible framework that can be adapted to 

broader medical diagnostic applications. 

 

3.4  Performance Evaluation 

The performance evaluation phase was designed to systematically 

assess the predictive capability, reliability, and generalization 

strength of the machine learning models developed for breast 

cancer diagnosis. This stage focused on establishing the 

evaluation metrics, validation procedures, and comparative 

framework necessary to objectively determine model 

effectiveness before deployment in clinical decision-support 

contexts. The evaluation followed a rigorous validation protocol 

incorporating stratified dataset partitioning, cross-validation, and 

metric-based performance assessment. These methods ensured 

that the developed models were not only accurate but also 

statistically stable and clinically interpretable. The overall process 

of performance evaluation is depicted in Figure 5, illustrating the 

relationship between training, validation, and testing procedures. 

 

 

 

 

 

 

Figure 5: Performance Evaluation Framework for Breast Cancer Diagnostic 

3.4.1  Validation Strategy 

The dataset was divided into training (70%) and testing (30%) 

subsets using stratified sampling to maintain class distribution 

consistency. The training data were further subjected to k-fold 

cross-validation (k = 10) to minimize sampling bias and estimate 

generalization performance. During cross-validation, the model 

was iteratively trained on 𝑘 − 1 folds and validated on the 

remaining fold, ensuring that every instance contributed to both 

training and validation at least once. This process provided a 

robust estimate of the model’s ability to generalize to unseen data, 

reducing overfitting and improving reproducibility. Figure 6 

presents the schematic representation of the cross-validation cycle 

implemented in this study.

 

 

Figure 4: Model Training and Validation Process 
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Figure 6: Ten-Fold Cross-Validation Procedure Used for Model Validation 

3.4.2  Evaluation Metrics 

Quantitative evaluation of the model’s performance was 

conducted using standard classification metrics derived from the 

confusion matrix. These metrics offer complementary insights 

into the model’s accuracy, sensitivity, and overall reliability. In a 

binary classification setting, the four primary outcomes, True 

Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN), were utilized to calculate the performance 

indicators. Table 3 presents the mathematical formulations and 

conceptual interpretations of these evaluation metrics.

Table 3: Summary of Model Evaluation Metrics and Their Analytical Roles 

Metric Mathematical Definition Interpretation Analytical Purpose 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Proportion of correct predictions Measures overall model 

reliability 

Precision 𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

Ratio of correctly identified 

malignant cases 

Evaluates false positive 

control 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Ratio of correctly detected true 

malignant cases 

Measures sensitivity to 

positive cases 

F1-score 
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Harmonic balance between 

precision and recall 

Ensures robustness under class 

imbalance 

 

3.4.3  Comparative Model Assessment 

A comparative evaluation framework was established to assess 

the relative performance of multiple classifiers, including Logistic 

Regression (LR), Support Vector Machine (SVM), and Decision 

Tree (DT). Each model was trained and validated under identical 

experimental conditions to ensure consistency in comparison. 

Model interpretability, computational efficiency, and sensitivity 

to data imbalance were additional qualitative factors considered 

during evaluation. The comparative analysis framework is 

outlined in Figure 7, which illustrates how results from multiple 

classifiers are benchmarked using a unified metric-based 

assessment approach.
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Figure 7: Comparative Evaluation Workflow for Multiple Classifiers 

3.4.4  Model Validation and Reliability Testing 

Beyond metric-based evaluation, additional reliability checks 

were incorporated to validate model robustness. The Receiver 

Operating Characteristic (ROC) curve and Area Under the Curve 

(AUC) analysis were planned to visualize the trade-off between 

sensitivity and specificity. The ROC curve plots the True Positive 

Rate (TPR) against the False Positive Rate (FPR) as defined in 

Equations (3) and (4): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                       (3) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                       (4) 

A higher AUC indicates superior discriminative capability of the 

model in distinguishing between malignant and benign cases. 

Figure 8 depicts the conceptual representation of the ROC curve 

that would be used for evaluating classifier performance. 

 

 

                             

Figure 8: Conceptual Representation of Receiver Operating Characteristic (ROC) Curve 

In summary, the performance evaluation methodology establishes 

a structured framework for assessing predictive models using a 

combination of quantitative metrics, cross-validation procedures, 

and graphical analysis techniques. By emphasizing both statistical 

validity and interpretability, this approach ensures that the 

developed classifiers are not only accurate but also reliable for 

real-world deployment in medical diagnostics. 

 

4. Results 

This section presents the experimental results obtained from 

implementing the Logistic Regression (LR) model for breast 

cancer prediction. The analysis was conducted using a cleaned 

and preprocessed dataset containing key clinical and 

histopathological attributes. Data were divided into training and 

testing subsets in a 70:30 ratio to ensure fair model evaluation. 

Various statistical and visualization techniques were employed to 

assess feature relationships, detect multicollinearity, and identify 

the most relevant predictors. Model performance was evaluated 

using standard classification metrics, including accuracy, 

precision, recall, F1-score, and the Area Under the Receiver 

Operating Characteristic (ROC) Curve (AUC). The results are 

presented alongside comparative evaluations with Support Vector 

Machine (SVM) and Decision Tree (DT) models to highlight the 

efficiency and interpretability of Logistic Regression. Visual 

representations such as confusion matrices, correlation heatmaps, 

and ROC curves are included to support the quantitative findings. 
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Overall, this section demonstrates how the proposed Logistic 

Regression model effectively distinguishes malignant from 

benign breast tumors, validating its suitability for clinical 

diagnostic applications. The results further emphasize the model’s 

balance between predictive accuracy, interpretability, and 

computational efficiency, making it a viable tool for real-world 

medical decision-support systems. 

 

4.1 Experimental Results 

The experimental analysis evaluated the performance of a 

Logistic Regression (LR) model for breast-cancer prediction 

using a publicly available dataset from Kaggle. The dataset 

comprised 569 records containing histopathological and 

morphological attributes relevant to breast-cancer diagnosis. Prior 

to modeling, missing values were imputed, anomalies removed, 

and all continuous variables normalized to improve consistency 

and stability. The dataset was divided into training (70%) and 

testing (30%) subsets using stratified sampling to preserve the 

malignant-to-benign class ratio. Figure 9 illustrates the 

preliminary configuration process for integrating Google Drive 

and data profiling tools within the Google Colab environment 

used in the project. The displayed code snippet installs two 

essential libraries, PyDrive and pandas-profiling, which enable 

seamless data access and exploration. PyDrive handles 

authentication and communication with Google Drive, allowing 

secure retrieval and storage of files, while pandas-profiling 

automatically generates comprehensive dataset reports, 

highlighting aspects such as data distribution, missing values, and 

key statistical summaries. This configuration streamlines data 

handling and enhances the efficiency of data preparation and 

analysis in the diabetes prediction project. 

 

 

Figure 9: Integrating Google Drive and data profiling tools 

Figure 10 depicts the authentication workflow for connecting 

Google Colab to Google Drive. The process starts with the 

authenticate_user() function, which prompts the user to verify 

their Google account, granting the notebook permission to access 

Google Drive files. Next, the GoogleAuth() object is initialized to 

manage authentication parameters, while 

GoogleCredentials.get_application_default() retrieves the 

default credentials required for access. Finally, 

GoogleDrive(gauth) establishes a secure connection to Google 

Drive using the authenticated credentials. This configuration 

enables safe retrieval and management of files stored in Google 

Drive for use in the diabetes prediction analysis

.  

 

Figure 10: Google Drive Authentication Setup 

Figure 11 presents the key Python libraries and modules 

employed in the diabetes prediction analysis using Logistic 

Regression. The code snippet demonstrates the importation of 

pandas for data manipulation, ydata_profiling for detailed data 

profiling, and numpy for numerical computations. Visualization 

tools such as matplotlib.pyplot and seaborn are utilized to create 

graphical and statistical visualizations of the dataset. The 

scipy.stats module provides essential statistical functions, while 

various sklearn submodules support machine learning operations, 

including feature selection (RFE, RFECV), dimensionality 

reduction (PCA), model construction (LogisticRegression, 

RandomForestClassifier), and performance evaluation 

(precision_score, recall_score, confusion_matrix, etc.). 

Furthermore, plotly.tools enables interactive visualizations, and 

tools such as GridSearchCV and cross_val_score are integrated 

for hyperparameter tuning and model validation. Collectively, 

these libraries form a robust framework that underpins all phases 

of the analytical workflow—from data preprocessing and feature 

engineering to model training, optimization, and evaluation. 

 

 

 

 

 

 

 

 
Figure 11: Importing Libraries and Modules for Data Analysis and Model Building 
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Figure 12 illustrates two user-defined functions developed for 

annotating correlation outcomes within data visualizations. The 

first function, corrdot, computes the Pearson correlation 

coefficient between two data series using args[0].corr(args[1], 

'pearson') and annotates the corresponding plot through 

ax.annotate. The font size of the annotation is dynamically scaled 

according to the absolute value of the correlation coefficient, 

thereby improving visual emphasis. The second function, 

corrfunc, also calculates the Pearson correlation coefficient but 

includes the associated p-value using stats.pearsonr(x, y). It 

annotates plots with p-value significance indicators (represented 

by stars), though the p_stars variable is presently left empty to 

allow for future customization. Both functions rely on plt.gca() to 

retrieve the current plotting axes, ensuring flexible and effective 

annotation of correlation statistics within visual analyse

 

                   

Figure 12: Custom Functions for Correlation Analysis and Annotation 

Figure 13 presents a detailed PairGrid visualization that explores 

and compares the relationships among key features in the dataset. 

The df_density DataFrame incorporates selected attributes such as 

radius_mean, texture_mean, and perimeter_mean. Using 

sns.PairGrid, a matrix of scatter plots, histograms, and density 

plots is constructed to reveal both linear and distributional 

patterns. The grid is configured to display regression-enhanced 

scatter plots (sns.regplot) in the lower triangle, histograms and 

kernel density estimates (sns.distplot, sns.rugplot) along the 

diagonal, and correlation coefficients (corrdot, corrfunc) in the 

upper triangle. To improve visual clarity, the appearance is 

refined with sns.set(style='white', font_scale=1.6), and subplot 

spacing is adjusted using g.fig.subplots_adjust. Titles are assigned 

to the diagonal plots to indicate feature names, while axis labels 

are intentionally omitted for a cleaner layout. This visualization 

framework provides an effective means of examining the pairwise 

relationships and distributional characteristics of the dataset’s 

features. 

 

 

 

 

 

 

 

Figure 14 displays a heatmap illustrating the correlation matrix of 

the dataset’s features. The command 

sns.set(rc={'figure.figsize':(11.7,8.27)}) defines the figure 

dimensions to enhance clarity and readability. The dataset.corr() 

function computes Pearson correlation coefficients between all 

feature pairs, while sns.heatmap visualizes these relationships 

using the color map cmap="YlOrRd". In the plot, warmer shades 

(ranging from yellow to red) signify stronger correlations, 

whereas cooler tones (orange to dark red) denote weaker ones. 

This visualization provides a quick and intuitive understanding of 

the relationships among variables, helping to identify highly 

correlated features that may influence subsequent analysis or 

feature selection. 

 

Figure 13: Pair Grid Visualization with Custom Correlation Annotations 
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Figure 14: Heatmap of Feature Correlations 

Figure 15 presents a matrix of scatterplots illustrating the 

relationships between pairs of features in the dataset, with data 

points colored according to the diagnosis variable. The figure 

comprises four subplots arranged to highlight different feature 

interactions. The top-left subplot (221) plots radius_mean against 

area_mean, illustrating how these two metrics vary with 

diagnosis. The top-right subplot (222) depicts the relationship 

between perimeter_mean and radius_worst, revealing patterns 

and distinctions between diagnostic categories. In the bottom-left 

subplot (223), texture_mean is plotted against texture_worst, 

offering insights into variations in texture-related measurements. 

The bottom-right subplot (224) visualizes area_worst against 

radius_worst, demonstrating potential correlations between these 

features. Using sns.scatterplot, the visualization differentiates 

diagnoses effectively, facilitating the exploration of feature 

interactions and distributions across diagnostic groups. Overall, 

this figure supports the identification of patterns or clusters that 

may correspond to specific diagnostic outcomes, enhancing 

understanding of the dataset’s structur

 

 

 

Figure 15: Scatterplot Matrix of Selected Features by Diagnosis 

Figure 16 illustrates the hyperparameter tuning workflow for a 

Logistic Regression model using the GridSearchCV method. The 

dataset is divided into training and testing subsets in a 70:30 ratio, 

with a fixed random_state of 42 to ensure reproducibility. The 

parameter grid (param_grid) defines the hyperparameters to be 

optimized—specifically, the penalty type ('l1' or 'l2') and the 
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regularization strength (C), which spans a range of values from 

0.001 to 1000. A Logistic Regression model is instantiated with 

the same random_state for consistency. GridSearchCV 

systematically explores all parameter combinations, assessing 

model performance based on accuracy. The search runs in parallel 

(n_jobs = -1) with verbose output enabled for detailed tracking. 

Upon completion, the optimal hyperparameter configuration is 

identified and displayed. This tuning process enhances the 

Logistic Regression model’s performance by selecting the most 

effective parameter settings for the given dataset.

 

 

 

 

 

 

 

Figure 17 illustrates the performance results of the Logistic 

Regression model after hyperparameter optimization using 

GridSearchCV. The model was fine-tuned with the optimal values 

for C and penalty, then trained on the training set and evaluated 

on the test set. The confusion matrix reveals True Positives (TP) 

of 62, True Negatives (TN) of 106, False Positives (FP) of 2, and 

False Negatives (FN) of 1, indicating excellent performance with 

minimal misclassifications. The confusion matrix was visualized 

and saved as a figure for reference. The evaluation metrics further 

confirm the model’s strong performance, with an accuracy of 

0.982 representing the proportion of correctly classified instances, 

a precision of 0.969 indicating the proportion of correct positive 

identifications, a recall of 0.984 reflecting the proportion of actual 

positives correctly identified, and an F1 score of 0.976, which 

balances precision and recall. Additionally, the ROC curve, 

plotted using the ROC_Curve function, depicts the trade-off 

between the true positive rate and the false positive rate. 

Collectively, the confusion matrix, performance metrics, and 

ROC curve provide a comprehensive evaluation of the Logistic 

Regression model’s effectiveness in distinguishing between 

different classes.

 

 

 

 

 

 

  

 

 

 

 

 

 

 

4.2  Comparative Evaluation 

Contextualizing the performance of the Logistic Regression (LR) 

model, a comparative analysis was conducted against two other 

standard classifiers frequently applied in medical data mining: 

Support Vector Machine (SVM) and Decision Tree (DT). Each 

model was trained and validated under identical conditions using 

the same preprocessed dataset, training–testing split, and 

evaluation metrics as described in Section 4.1. All models were 

optimized using GridSearchCV for hyperparameter tuning, 

ensuring fair  

 

 

 

 

 

 

 

comparison. For the SVM model, the optimal kernel parameter 

(γ\gammaγ) and regularization coefficient (𝐶) were selected 

through cross-validation. The Decision Tree classifier was 

optimized by varying maximum depth and minimum split size 

parameters to avoid overfitting while maintaining generalization 

performance. Logistic Regression’s tuning followed the same 

protocol (Figure 4.1.8) with penalty 𝐿2 and 𝐶 = 1.0 providing the 

most stable results. Model performance was evaluated using 

accuracy, precision, recall, and F1-score, computed from 

Equations (2) through (5). The comparative results are presented 

in Table 4, which summarizes the predictive capability of each 

classifier. 

 

Table 4: Comparative Performance of Logistic Regression, Support Vector Machine, and Decision Tree Models 

Figure 16: Hyper parameter tuning for Logistic Regression 

Figure 17: Confusion Matrix and Evaluation Metrics for Optimized Logistic Regression Model 
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

Logistic Regression (LR) 98.2 96.9 98.4 97.6 0.99 

Support Vector Machine (SVM) 96.8 94.5 95.9 95.2 0.97 

Decision Tree (DT) 94.3 92.7 93.1 92.9 0.95 

Note. Performance metrics were computed using 10-fold cross-validation on the same dataset partitioning. AUC = Area Under the 

ROC Curve. 

As shown in Table 4, Logistic Regression achieved the highest 

overall performance across all metrics, surpassing SVM and DT 

in both predictive accuracy and AUC value. Its simplicity and 

interpretability made it particularly suitable for explaining clinical 

decision boundaries, as logistic coefficients directly correspond to 

feature importance in predicting malignancy risk. The SVM 

model provided strong classification power but required more 

computational time and exhibited slightly reduced recall, 

suggesting a conservative bias in classifying borderline cases. In 

contrast, the Decision Tree model achieved high interpretability 

but tended to overfit the training data, leading to marginally lower 

test accuracy. These results collectively validate that, while 

advanced nonlinear models can achieve strong predictive 

capability, well-tuned Logistic Regression remains a robust and 

clinically interpretable solution for breast-cancer prediction when 

supported by rigorous preprocessing and hyperparameter 

optimization. Figure 4.2 illustrates a visual comparison of the 

ROC curves across the three classifiers, highlighting the superior 

area under the curve achieved by Logistic Regression. 

 

4.3  Discussion of Findings 

The findings of this study demonstrate that the Logistic 

Regression (LR) model achieved superior performance in 

predicting breast cancer diagnosis compared with Support Vector 

Machine (SVM) and Decision Tree (DT) classifiers. The LR 

model achieved an accuracy of 98.2%, with a corresponding 

precision of 96.9%, recall of 98.4%, and F1-score of 97.6%. 

These results highlight the model’s robustness, predictive 

reliability, and suitability for clinical interpretation (see Table 4). 

 

Interpretation of Model Performance 

The high accuracy obtained from Logistic Regression can be 

attributed to its ability to model the probabilistic relationship 

between predictor variables and binary outcomes efficiently. The 

sigmoid transformation function (Equation 1) provides a 

continuous probability output, enabling nuanced decision 

boundaries that accommodate the inherent overlap between 

benign and malignant cases. Furthermore, the feature scaling and 

normalization processes implemented during preprocessing 

enhanced numerical stability and ensured that features such as 

clump thickness, bare nuclei, and mitotic count contributed 

proportionally to the final decision boundary. The application of 

10-fold cross-validation reinforced the generalizability of the 

model, reducing the likelihood of overfitting and increasing 

predictive consistency across unseen data samples. 

 

Comparative Interpretation 

While the SVM and DT classifiers also achieved high predictive 

accuracy (96.8% and 94.3%, respectively), their performance 

lagged slightly behind LR due to differences in generalization 

mechanisms. The SVM, despite its strong boundary optimization, 

required intensive hyperparameter tuning and was more sensitive 

to the kernel parameter (γ\gammaγ) and regularization term 

(CCC). The DT model, though highly interpretable, tended to 

overfit due to its hierarchical splitting mechanism, leading to 

reduced generalization on test data. These comparative outcomes 

corroborate findings from Zhao et al. (2023) and Mehta & Liu 

(2024), who reported that logistic regression performs 

competitively with more complex models in structured 

biomedical datasets, especially when preprocessing and 

hyperparameter optimization are properly executed. 

 

Clinical and Practical Implications 

From a clinical standpoint, the interpretability of Logistic 

Regression offers a key advantage in precision medicine. The 

model coefficients directly indicate the relative contribution of 

each histopathological feature, facilitating transparent clinical 

reasoning and trust among practitioners. This interpretability 

contrasts with the “black-box” nature of deep learning models, 

where decision mechanisms are often opaque. The ability to 

identify statistically significant predictors such as bare nuclei and 

uniformity of cell size aligns with existing clinical understanding 

of breast cancer pathology and supports the development of 

explainable diagnostic support tools. Moreover, the model’s 

minimal computational cost and straightforward implementation 

make it viable for deployment in low-resource medical settings, 

including sub-Saharan Africa, where access to advanced 

computing infrastructure is limited. The integration of this model 

into electronic health systems could assist physicians in rapid 

triage and early detection, improving survival rates through 

timely intervention. 

 

Methodological Reflections and Limitations 

Despite its success, several methodological constraints were 

identified. First, the dataset was limited to 569 patient records, 

which, while sufficient for experimental validation, restricts 

large-scale generalizability. Future studies should explore multi-

institutional datasets to capture broader genetic and demographic 

variability. Second, the reliance on a binary classification 

approach (benign vs. malignant) may oversimplify the continuum 

of tumor aggressiveness. Extending the framework to multiclass 

classification (e.g., low-, medium-, and high-risk tumors) would 

enhance clinical applicability. Lastly, while Logistic Regression 

provides interpretability, its linear assumptions limit its capacity 

to model complex nonlinear feature interactions. Integrating 

hybrid or ensemble methods, such as Logistic Regression with 

Gradient Boosting or Explainable Neural Networks (XNNs), 

could improve accuracy while maintaining interpretability. 

In summary, the study reaffirms Logistic Regression as a 

statistically sound and clinically meaningful model for breast 

cancer prediction. The results support its deployment as a baseline 

predictive framework for histopathological data analysis. When 

combined with systematic preprocessing, hyperparameter 

optimization, and interpretability tools, LR serves as both a 

reliable diagnostic aid and a foundation for future explainable AI 

research in oncology. 

 

5. Conclusion 

This study established Logistic Regression (LR) as a reliable and 

interpretable model for predicting breast cancer using clinical and 

histopathological data. The model achieved 98.2% accuracy, with 

high precision, recall, and F1-score, confirming its robustness and 

diagnostic reliability. Compared with Support Vector Machine 

(SVM) and Decision Tree (DT) models, LR demonstrated 

superior performance while maintaining simplicity and 

transparency, making it suitable for clinical decision-support 
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applications. Its probabilistic output enables clinicians to interpret 

results easily and make evidence-based diagnostic decisions, 

especially in resource-limited healthcare environments. However, 

the study’s dataset was relatively small and region-specific, which 

may affect generalizability. Logistic Regression also assumes 

linear relationships among predictors, limiting its capacity to 

model complex nonlinear interactions inherent in biological data. 

Future research should expand the dataset across multiple 

institutions to improve model adaptability and validation. Hybrid 

and ensemble approaches that integrate Logistic Regression with 

deep-learning or gradient-boosting techniques may enhance 

predictive capability while retaining interpretability. 

Additionally, incorporating explainable AI (XAI) frameworks 

will foster greater trust among healthcare professionals. 

Integrating the model into electronic health record (EHR) systems 

could further enable real-time breast-cancer screening support 

and strengthen early detection efforts, ultimately improving 

patient survival outcomes. 
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