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Abstract

Breast cancer remains one of the leading causes of death among women worldwide, with early diagnosis being crucial
for effective treatment and survival. Traditional diagnostic methods such as mammography and biopsy, though
effective, are often limited by human error and time constraints. Recent advances in machine learning (ML) have
enabled the development of automated models for accurate and efficient cancer prediction. This study applies to
Logistic Regression (LR) to predict breast cancer using clinical and histopathological datasets obtained from Kaggle
and the University of llorin Teaching Hospital. The dataset was preprocessed through normalization, correlation
analysis, and recursive feature elimination (RFE) to ensure data consistency and optimal feature selection. The data
were divided into training (70%) and testing (30%) subsets. The model’s parameters were optimized using
GridSearchCV, while evaluation metrics such as accuracy, precision, recall, F1-score, and Area Under the Curve
(AUC) were employed to assess performance. The Logistic Regression model achieved an accuracy of 98.2%,
precision of 96.9%, recall of 98.4%, and an F1-score of 97.6%. The Receiver Operating Characteristic (ROC) curve
analysis confirmed a high discriminative capability with an AUC of 0.99, outperforming Support Vector Machine
(SVM) and Decision Tree (DT) models under the same experimental conditions. The results validate Logistic
Regression as a robust, interpretable, and computationally efficient model for breast cancer prediction. Its simplicity,
transparency, and diagnostic accuracy make it suitable for deployment in clinical decision-support systems, particularly

in low-resource settings.
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1. Introduction

Breast cancer diagnosis represents a critical area of application
within modern healthcare and medical informatics, attracting
significant research attention due to its high mortality rate and
increasing global prevalence. As the most common malignancy
among women, breast cancer accounts for millions of new cases
annually, with invasive ductal carcinoma (IDC) being the
predominant subtype (Babatunde et al., 2025a; Babatunde et al.,
2025c; Advocate Health Care, 2024; Abikoye et al., 2017). The
complexity of breast cancer lies in its heterogeneous nature,
encompassing  various histopathological and  molecular
characteristics that challenge early detection. Recent advances in
computational intelligence and machine learning (ML) have
enabled the automation of diagnostic processes, providing tools
that can analyze large datasets to detect malignancy patterns with
high accuracy (Babatunde et al., 2024; Ogundokun et al., 2023;
Alsabry et al., 2023). The integration of ML in this domain has
thus become essential for enhancing diagnostic precision,
supporting oncologists in identifying cancerous lesions at an early
stage, and improving patient survival rates (Babatunde et al.,
2025b; Ettazi et al., 2023).

Despite significant technological progress, several problems
persist in breast cancer diagnosis. Conventional diagnostic
methods such as mammography, biopsy, and cytological
assessment often rely heavily on expert interpretation, which can
be subjective and prone to human error (Babatunde et al., 2025c;
Chen et al., 2023). Additionally, the manual evaluation of
histopathological images and patient records is time-consuming
and limited by variability in medical expertise. As a result,
misdiagnosis and delayed detection remain common, particularly
in low-resource healthcare systems where advanced diagnostic
tools are inaccessible (Khozama & Mayya, 2021). Furthermore,
the increasing complexity of medical data and the presence of
redundant or correlated features in clinical datasets hinder
efficient classification of benign and malignant tumors (Pokala et
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al., 2022). These issues underscore the need for automated,
interpretable, and computationally efficient methods capable of
improving diagnostic accuracy and minimizing clinical
uncertainty.

Logistic Regression was adopted as the primary technique for
addressing these challenges, owing to its suitability for binary
classification problems, interpretability, and computational
efficiency (Babatunde et al., 2022; Chaurasiya & Rajak, 2022).
The method models the probability that a given case belongs to a
malignant or benign class based on multiple predictive attributes
such as clump thickness, uniformity of cell size, and bare nuclei
(Iparraguirre et al., 2023). Logistic Regression was chosen
because it provides a direct probabilistic interpretation of
outcomes and allows for feature significance assessment,
enabling medical practitioners to understand the contribution of
each diagnostic variable (Zaidi et al., 2023). In contrast to black-
box models such as deep neural networks, Logistic Regression
maintains transparency in decision-making, which is crucial in
medical contexts where explainability determines clinical
acceptance (Yaqoob et al., 2023). The study incorporated
preprocessing techniques such as normalization and feature
selection to enhance model robustness and reduce
multicollinearity (VanitaParmar & SaketSwarndeep, 2022).
These steps ensured that the model remained both accurate and
interpretable while generalizing effectively to unseen data.

The major advantage of Logistic Regression over existing
machine-learning techniques lies in its balance between
simplicity, statistical rigor, and clinical interpretability. Studies
have shown that Logistic Regression performs comparably or
better than more complex models like Support Vector Machines
(SVM) and Decision Trees (DT) when applied to structured
biomedical datasets (Babatunde et al., 2022; Botlagunta et al.,
2023; Obare, 2023). While SVM and DT often require extensive
hyperparameter tuning and may overfit small datasets, Logistic
Regression achieves high classification accuracy with minimal
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computational overhead (Pokala et al., 2022). Moreover, Logistic
Regression allows clinicians to quantify the influence of each
input variable through coefficient analysis, thereby reinforcing
diagnostic confidence and supporting evidence-based decision-
making (Okebule et al., 2023). Unlike ensemble or deep-learning
models that obscure internal mechanisms, Logistic Regression
fosters model transparency, enabling medical experts to validate
results against established clinical indicators (Isiaka et al., 2024;
Humayun et al., 2023).

In solving the identified diagnostic problems, Logistic Regression
was applied through a systematic modeling pipeline involving
data acquisition, preprocessing, feature optimization, and
predictive analysis. The dataset, consisting of histopathological
and morphological attributes, was cleaned, normalized, and
divided into training and testing subsets to ensure balanced
representation of benign and malignant cases (Nemade & Fegade,
2023). Feature selection was conducted using recursive feature
elimination to identify the most relevant predictors influencing
breast cancer diagnosis (Kurian & Jyothi, 2021). Logistic
Regression was then trained using the selected features, and its
parameters were optimized through cross-validation and
regularization techniques to enhance generalization (Chen et al.,
2023). Performance evaluation metrics such as accuracy,
precision, recall, and Fl-score were computed to assess the
model’s reliability, confirming its high predictive capability in
distinguishing malignant from benign tumors (Gonzalez-Castro et
al., 2023). This methodological integration demonstrates how
Logistic Regression, when supported by robust preprocessing and
parameter optimization, provides a clinically viable, interpretable,
and efficient framework for breast cancer prediction.

In essence, the study applies Logistic Regression to address the
challenges of diagnostic uncertainty and data complexity in breast
cancer prediction. The method’s advantages—including
interpretability, computational efficiency, and high predictive
accuracy make it an effective tool for early diagnosis, particularly
in healthcare settings with limited resources. By leveraging
medical datasets and rigorous validation techniques, Logistic
Regression establishes a transparent and replicable predictive
framework capable of enhancing clinical decision-making and
improving patient outcomes in breast cancer management (Zaidi
et al, 2023; Alsabry et al, 2023; VanitaParmar &
SaketSwarndeep, 2022).

2. Review of Related Work

Breast cancer remains a major global health concern, accounting
for a significant proportion of female mortality worldwide.
Conceptually, it is recognized as a complex, heterogeneous
disease influenced by multiple genetic, biological, and
environmental factors (Advocate Health Care, 2024). The
growing demand for early detection and accurate diagnosis has
led to the integration of artificial intelligence (Al) and machine
learning (ML) in breast-cancer research. The conceptual
foundation for ML-based breast-cancer prediction lies in data-
driven modeling, where clinical and histopathological features are
used to train algorithms capable of distinguishing between benign
and malignant tumors. According to Alsabry et al. (2023), ML
techniques are conceptually built around risk-factor assessment,
where variables such as cell size, texture, clump thickness, and
bare nuclei are quantified to estimate malignancy probability.
Predictive analytics in healthcare aims to utilize computational
algorithms to identify hidden patterns in biomedical data for
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evidence-based diagnosis. Ettazi et al. (2023) further
conceptualized ML-driven diagnostic systems as intelligent
decision-support mechanisms that combine algorithmic reasoning
with clinical judgment to enhance medical decision-making.
Similarly, Chen et al. (2023) described breast-cancer
classification models as supervised-learning systems designed to
minimize diagnostic errors and strengthen physician judgment.
Khozama and Mayya (2021) explained that conceptualizing ML
in cancer-risk prediction involves quantifying the influence of
individual features to promote transparency and explainability.
This notion aligns with the rising need for explainable Al in
healthcare, which balances accuracy and interpretability.
Moreover, Obare (2023) and Yaqoob et al. (2023) framed ML-
based breast-cancer diagnosis within a human-centric intelligence
model, emphasizing collaboration between computational
precision and clinical expertise. Conceptually, therefore, ML-
based prediction transforms traditional diagnostic approaches into
automated, data-informed, and interpretable decision-support
systems.

Empirical studies have validated the performance of ML
algorithms in breast-cancer classification and prognosis.
Chaurasiya and Rajak (2022) empirically compared algorithms
such as Support Vector Machines (SVM), Decision Trees (DT),
and Logistic Regression (LR), concluding that LR provides a
desirable trade-off between accuracy and interpretability.
Likewise, Pokala et al. (2022) revealed that preprocessing, feature
selection, and hyperparameter optimization significantly improve
model reliability across various ML frameworks. Empirical
findings from Botlagunta et al. (2023) confirmed that ML-based
diagnostic systems can predict breast-cancer metastasis
effectively when trained on high-quality histopathological data.
Gonzélez-Castro et al. (2023) expanded this by integrating
structured and unstructured information from electronic health
records (EHRs), demonstrating improved accuracy in recurrence
prediction and patient follow-up modeling.

In a similar study, Humayun et al. (2023) implemented deep-
learning architectures and reported high sensitivity and specificity
in detecting risk, although they noted reduced interpretability
compared with linear models. Iparraguirre et al. (2023)
demonstrated that feature optimization using recursive feature
elimination enhanced model generalization and reduced
overfitting. Furthermore, Nemade and Fegade (2023) and
Okebule et al. (2023) verified that Logistic Regression remains a
reliable and computationally efficient classifier when applied to
balanced datasets. VVanita Parmar and Saket Swarndeep (2022)
emphasized that integrating dimensionality reduction and cross-
validation techniques improves consistency, while Vikas and
Vishu (2021) highlighted the importance of normalization for
reproducibility. Empirical evidence from Zaidi et al. (2023)
reaffirmed LR’s robustness as a baseline model in healthcare
prediction due to its simplicity, stability, and interpretability.
Collectively, these studies underscore the practical value of ML
particularly  Logistic Regression in producing accurate,
transparent, and computationally efficient predictive outcomes.
The theoretical dimension of related research, summarized in
Table 1, provides deeper insights into the conceptual
underpinnings and methodological logic that guide model
selection for breast-cancer prediction. The reviewed literature
highlights various theoretical frameworks, including statistical
learning theory, feature-optimization theory, and explainable Al,
that support the development of predictive models.
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Table 1: Theoretical Review of Related Studies on Breast-Cancer Prediction

Author Dataset Model / Theory Contribution Gap / Limitation
(Year) Applied
Chen et al. Public breast-cancer Logistic Regression; | Established LR as a probabilistic Limited exploration of
(2023) dataset (e.g., Statistical Learning classifier using sigmoid nonlinear relationships and
Wisconsin Theory transformation and maximum- feature interactions.
Diagnostic Dataset) likelihood estimation for binary
diagnosis.
Iparraguirre Clinical diagnostic Logistic Regression | Grounded model optimization in Predictive strength affected
et al. (2023) datasets with Recursive feature-selection and by class imbalance; needs
Feature Elimination regularization theory to improve larger datasets for
(RFE) interpretability and reduce validation.
overfitting.
Pokala et al. Comparative ML Multiple ML Models | Provided theoretical basis for Did not investigate hybrid
(2022) datasets (LR, SVM, DT) assessing trade-offs in or ensemble theoretical
classification, emphasizing frameworks for enhanced
parameter tuning and accuracy.
optimization.
Yaqoob etal. | Secondary cancer- Explainable Al and Linked interpretability with Lacked empirical
(2023) classification datasets | Human-Centric clinical trust, advocating validation of
Intelligence Theory | transparent predictive modeling in | interpretability metrics and
medical Al. real-world deployment.
Alsabry etal. | Multiple secondary Risk-Factor Developed a theoretical model Did not integrate domain-
(2023) datasets from Modeling Theory where quantifiable diagnostic specific medical ontologies
literature features predict malignancy to improve theoretical
probability via ML algorithms. accuracy.
Humayun et Image-based datasets | Deep Learning Advanced theoretical Limited interpretability;
al. (2023) (Neural-Network understanding of automated computationally intensive.
Theory) feature extraction for cancer-risk
prediction.
Obare (2023) | Reviewed multiple Comparative ML Proposed unified theoretical Absent empirical testing of
breast-cancer datasets | Theoretical foundation for selecting diagnostic | proposed theoretical
Framework algorithms based on constructs.
interpretability.
Zaidi et al. Structured clinical Logistic Regression | Reinforced LR’s theoretical Lacked exploration of
(2023) datasets Theoretical robustness, simplicity, and clinical | nonlinear or ensemble
Framework suitability as a baseline predictive | theoretical extensions.
model.

As presented in Table 2, the reviewed theories consistently
support the use of Logistic Regression as a reliable, interpretable,
and mathematically grounded model for breast-cancer prediction.
Theoretical gaps identified across studies such as limited handling
of nonlinear relationships, data imbalance, and low
interpretability in deep-learning models provide justification for
developing optimized Logistic Regression frameworks that
preserve clinical transparency while improving predictive
precision.

3. Methodology

The methodology of this study outlines the systematic procedures
employed to develop, train, and evaluate a Logistic Regression
model for breast cancer prediction. It describes the steps taken to
ensure data quality, feature optimization, model reliability, and
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performance validation.

The

approach integrates

both

experimental and computational techniques to transform raw
clinical and histopathological data into actionable predictive
insights. The process began with data acquisition from verified
medical sources, followed by preprocessing to handle missing
values, normalize features, and eliminate redundancy. Feature
selection techniques were then applied to identify the most
significant predictors of malignancy. The Logistic Regression
algorithm was chosen for its suitability in binary classification
tasks, interpretability, and computational efficiency. The model
was trained and validated using a 70:30 train—test split, with
hyperparameter tuning conducted through GridSearchCV to
optimize performance. Evaluation metrics such as accuracy,
precision, recall, F1-score, and the Area Under the Curve (AUC)
were used to assess predictive capability. This methodological
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framework ensures a balance between statistical rigor,
interpretability, and clinical relevance, providing a reproducible
foundation for deploying machine learning models in real-world
breast cancer diagnosis and decision-support systems.

31 Data Acquisition

The dataset employed in this research was obtained from the
University of llorin Teaching Hospital, Nigeria, comprising
clinical records of 684 patients diagnosed with breast cancer.
Each record contained multiple histopathological and cytological
features describing tumor morphology and biological
characteristics. The data were fully anonymized to preserve
patient confidentiality and conform to ethical standards governing
medical research. The dataset incorporated ten diagnostic
variables: clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli, mitoses, and a target
classification variable denoting benign or malignant status.
Collectively, these attributes represent the essential
morphological and biological properties used to distinguish
malignant tumors from benign growths. For instance, clump

A B L U E F

thickness and uniformity of cell size reflect the degree of cellular
cohesion, while marginal adhesion and bare nuclei indicate
potential loss of normal cell structure and function. Similarly,
parameters such as mitotic rate and nucleolar prominence capture
the degree of abnormal cellular activity typically associated with
malignancy.

Each patient record, therefore, encapsulated a comprehensive
diagnostic profile that integrates cellular morphology, chromatin
texture, and growth dynamics. This holistic representation
provides a robust foundation for predictive modeling by allowing
the exploration of feature interrelationships that underpin tumor
classification. The dataset was meticulously curated to ensure
internal consistency and to eliminate incomplete or erroneous
entries prior to analysis.

A sample structure of the dataset used for this experiment is
presented in Figure 1, which illustrates the organization of clinical
attributes and their corresponding diagnostic outcomes. This
structured representation ensures that the dataset is both
statistically meaningful and clinically interpretable, serving as a
reliable input for subsequent preprocessing, model training, and
evaluation stages.
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Figure 1: Dataset for this experiment

3.2 System Design

The system design for the breast cancer prediction framework
followed a structured, modular approach that integrated data
acquisition, preprocessing, model training, classification, and
performance evaluation. This architecture was developed to
facilitate a systematic progression from raw data collection to
model deployment, ensuring that each stage contributed
meaningfully to the accuracy and reliability of the final prediction
model. The overall workflow of the system is depicted in Figure
2, which illustrates the logical sequence of processes undertaken
in the study. The design begins with the acquisition of the breast
cancer dataset from the University of llorin Teaching Hospital,
comprising clinical and histopathological features from patients
diagnosed with breast cancer. Once the data were collected,
comprehensive preprocessing techniques were applied to improve
quality and analytical consistency. These procedures included
cleaning to remove duplicates and incomplete records, handling
missing values through mean imputation, and normalizing
numerical attributes using z-score standardization. This ensured
that all input features were represented on a common scale,
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preventing dominance of features with larger magnitudes and
improving model convergence.

Following preprocessing, the dataset was partitioned into training
and testing subsets in a 70:30 ratio using stratified sampling. This
approach maintained the balance between malignant and benign
cases, thereby preventing classification bias. The training subset
was used to construct predictive models, while the testing subset
served as an independent evaluation set to assess the model’s
generalization ability. Three supervised machine learning models:
Support Vector Machine (SVM), Decision Tree (DT), and
Logistic Regression (LR) were implemented and trained using the
prepared dataset. Each model applied a distinct learning
mechanism to classify tumors based on the given clinical and
histopathological features. The SVM algorithm sought an optimal
hyperplane that maximized class separation, the Decision Tree
employed hierarchical decision nodes based on feature thresholds,
and the Logistic Regression model estimated the probability of
malignancy using a sigmoid function.

After model construction, the classification phase involved
applying each algorithm to the test data to predict tumor classes.
Comparative analysis was then performed to evaluate the
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predictive performance of the classifiers using standard metrics
such as accuracy, precision, recall, and F1-score. The comparative
results guided the identification of the most effective classifier for
breast cancer diagnosis, balancing accuracy and interpretability.
The final stage of the system design involved selecting the best-
performing classifier and preparing it for integration into

diagnostic decision-support environments. This ensured that the
developed model could be applied effectively in real-world
healthcare settings to assist clinicians in early detection and
treatment planning. The complete system design framework is
conceptually summarized in Figure 2.
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Figure 2: Flowchart of the Proposed Breast Cancer Prediction System

3.3 Analysis of the Proposed System (Implementation)
The implementation of the proposed breast cancer diagnostic
system was structured as a systematic analytical framework
integrating data preprocessing, feature optimization, model
development, and validation. The objective was to design a robust

and interpretable computational pipeline capable of supporting
accurate and scalable breast cancer classification based on clinical
and histopathological features. The complete workflow of the
system implementation is presented in Figure 3, illustrating the
sequential relationship among the major methodological
components.

Data Preprocessing

A4

Feature Optimization

v

Model Development

"[ Evaluation J

v
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Figure 3: Implementation Framework for the Proposed Breast Cancer Diagnostic System
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3.3.1 Model Formulation

The foundation of the proposed system lies in the Logistic
Regression (LR) algorithm, which was adopted due to its
interpretability, computational efficiency, and suitability for
binary classification tasks. Logistic Regression estimates the

PY=1|X)=

1

probability that a tumor is malignant or benign by modeling the
relationship between a set of independent features and the
dependent variable. The logistic function is mathematically
expressed in Equation (1):

where P(Y = 1| X) represents the probability of malignancy, B,
denotes the intercept, and B; corresponds to the coefficients
associated with each predictor X;. The model parameters were
optimized using the maximum likelihood estimation (MLE)
technique to achieve the best fit between predicted and observed

1 RN
J® = —;;[yizog(m + (L= y)log(1 - )] +%JZ G

In this expression, J(B) represents the cost function, A is the
regularization constant, mmm denotes the number of training
instances, and ¥; signifies the predicted probability for each
observation. The addition of the regularization term penalizes
overly complex models, encouraging parameter sparsity and
preventing multicollinearity among features.

3.3.2 Feature Selection and Optimization

Feature selection was employed to enhance computational
efficiency and model interpretability by identifying the most

1 + eBo+B1X1+B2X3++BnXn)

€y

outcomes. Prevent overfitting and enhance model generalization,
L2 regularization was incorporated into the cost function as
shown in Equation (2):

)

relevant predictors of breast cancer diagnosis. The process began
with correlation analysis to detect and remove highly collinear
variables, followed by Recursive Feature Elimination (RFE) to
iteratively identify the optimal subset of features contributing
most to model performance. RFE operates by training the logistic
regression model on the full set of features, ranking them
according to their predictive significance, and progressively
eliminating the least relevant variables. The iteration continues
until the minimal feature subset that maintains maximal
classification performance is obtained. A conceptual summary of
this process is presented in Table 2.

Table 2: Summary of Feature Selection Procedures and Methodological Roles

Step Technique Description Methodological Purpose Expected Outcome
1 Correlation Analysis Measures pairwise correlation Removes redundant and Reduced feature
between variables collinear features redundancy
2 Recursive Feature Iteratively removes least Identifies optimal subset of Enhanced model
Elimination (RFE) significant features predictors interpretability
3 Normalization Standardizes feature scale using | Ensures uniform feature Stable model
z-score contribution convergence

This methodological pipeline ensures that only statistically
relevant and non-redundant variables are retained for model
training, thereby improving the robustness of subsequent
predictive modeling.

3.33 Model Implementation and Training

Model development and analysis were performed using the
Python 3.10 programming environment, leveraging libraries such
as scikit-learn, NumPy, and Pandas. The dataset was partitioned
into training (70%) and testing (30%) subsets using stratified
sampling to maintain class balance between benign and malignant
cases. Model training followed an iterative optimization process
using the gradient descent algorithm, where the cost function
defined in Equation (2) was minimized until convergence. The
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learning rate, regularization strength, and batch size were adjusted
through grid search hyperparameter tuning. Additionally, k-fold
cross-validation (k = 10) was implemented to ensure
generalization and minimize the effects of sampling variability.
Early stopping criteria were applied to halt training once
validation performance plateaued, preventing overfitting and
promoting model stability. The overall training and validation
sequence is depicted in Figure 4, which demonstrates the flow of
model initialization, optimization, and evaluation.
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Figure 4: Model Training and Validation Process

3.34 System Architecture and Integration

The implemented system was designed with modularity and
scalability in mind, enabling seamless integration with clinical
diagnostic workflows. Each module data preprocessing, feature
selection, model training, and validation was independently
structured to allow parameter modification and component
replacement without affecting overall functionality. This
architecture ensures reproducibility and adaptability to new
datasets or extended feature sets. The system’s analytical design
provides a foundation for incorporating advanced learning
mechanisms such as ensemble modeling or deep learning
extensions in future work.

In summary, the implementation phase of the proposed system
involved the development of an interpretable and computationally
efficient framework for breast cancer diagnosis. The methodology
combined robust preprocessing, systematic feature selection, and
optimized logistic regression modeling to ensure accuracy,
stability, and clinical applicability. By maintaining a balance
between algorithmic rigor and interpretability, the system

establishes a reproducible framework that can be adapted to
broader medical diagnostic applications.

34 Performance Evaluation

The performance evaluation phase was designed to systematically
assess the predictive capability, reliability, and generalization
strength of the machine learning models developed for breast
cancer diagnosis. This stage focused on establishing the
evaluation metrics, validation procedures, and comparative
framework necessary to objectively determine model
effectiveness before deployment in clinical decision-support
contexts. The evaluation followed a rigorous validation protocol
incorporating stratified dataset partitioning, cross-validation, and
metric-based performance assessment. These methods ensured
that the developed models were not only accurate but also
statistically stable and clinically interpretable. The overall process
of performance evaluation is depicted in Figure 5, illustrating the
relationship between training, validation, and testing procedures.

Testing

—{ Validation

Metrics

Figure 5: Performance Evaluation Framework for Breast Cancer Diagnostic

34.1 Validation Strategy

The dataset was divided into training (70%) and testing (30%)
subsets using stratified sampling to maintain class distribution
consistency. The training data were further subjected to k-fold
cross-validation (k = 10) to minimize sampling bias and estimate
generalization performance. During cross-validation, the model
was iteratively trained on k —1 folds and validated on the

remaining fold, ensuring that every instance contributed to both
training and validation at least once. This process provided a
robust estimate of the model’s ability to generalize to unseen data,
reducing overfitting and improving reproducibility. Figure 6
presents the schematic representation of the cross-validation cycle
implemented in this study.
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Figure 6: Ten-Fold Cross-Validation Procedure Used for Model Validation

342 Evaluation Metrics

Quantitative evaluation of the model’s performance was
conducted using standard classification metrics derived from the
confusion matrix. These metrics offer complementary insights
into the model’s accuracy, sensitivity, and overall reliability. In a

binary classification setting, the four primary outcomes, True
Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN), were utilized to calculate the performance
indicators. Table 3 presents the mathematical formulations and
conceptual interpretations of these evaluation metrics.

Table 3: Summary of Model Evaluation Metrics and Their Analytical Roles

Metric Mathematical Definition Interpretation Analytical Purpose
Accuracy TP+TN Proportion of correct predictions | Measures overall model
TP+ TN+ FP +FN reliability
Precision TP Ratio of correctly identified Evaluates false positive
TP + TN malignant cases control
Recall TP Ratio of correctly detected true Measures sensitivity to
TP + FP malignant cases positive cases
F1-score Precission X Recall Harmonic balance between Ensures robustness under class
X Precision + Recall precision and recall imbalance
343 Comparative Model Assessment Model interpretability, computational efficiency, and sensitivity

A comparative evaluation framework was established to assess
the relative performance of multiple classifiers, including Logistic
Regression (LR), Support Vector Machine (SVM), and Decision
Tree (DT). Each model was trained and validated under identical
experimental conditions to ensure consistency in comparison.
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to data imbalance were additional qualitative factors considered
during evaluation. The comparative analysis framework is
outlined in Figure 7, which illustrates how results from multiple
classifiers are benchmarked using a unified metric-based
assessment approach.
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Figure 7: Comparative Evaluation Workflow for Multiple Classifiers

3.4.4 Model Validation and Reliability Testing

Beyond metric-based evaluation, additional reliability checks
were incorporated to validate model robustness. The Receiver
Operating Characteristic (ROC) curve and Area Under the Curve
(AUC) analysis were planned to visualize the trade-off between
sensitivity and specificity. The ROC curve plots the True Positive
Rate (TPR) against the False Positive Rate (FPR) as defined in
Equations (3) and (4):

TPR = L 3
" TP+ FN ®)
FPR = ki 4

" FP+TN )

A higher AUC indicates superior discriminative capability of the
model in distinguishing between malignant and benign cases.
Figure 8 depicts the conceptual representation of the ROC curve
that would be used for evaluating classifier performance.
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Figure 8: Conceptual Representation of Receiver Operating Characteristic (ROC) Curve

In summary, the performance evaluation methodology establishes
a structured framework for assessing predictive models using a
combination of quantitative metrics, cross-validation procedures,
and graphical analysis techniques. By emphasizing both statistical
validity and interpretability, this approach ensures that the
developed classifiers are not only accurate but also reliable for
real-world deployment in medical diagnostics.

4. Results

This section presents the experimental results obtained from
implementing the Logistic Regression (LR) model for breast
cancer prediction. The analysis was conducted using a cleaned
and preprocessed dataset containing key clinical and

histopathological attributes. Data were divided into training and
testing subsets in a 70:30 ratio to ensure fair model evaluation.
Various statistical and visualization techniques were employed to
assess feature relationships, detect multicollinearity, and identify
the most relevant predictors. Model performance was evaluated
using standard classification metrics, including accuracy,
precision, recall, F1-score, and the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC). The results are
presented alongside comparative evaluations with Support Vector
Machine (SVM) and Decision Tree (DT) models to highlight the
efficiency and interpretability of Logistic Regression. Visual
representations such as confusion matrices, correlation heatmaps,
and ROC curves are included to support the quantitative findings.
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Overall, this section demonstrates how the proposed Logistic
Regression model effectively distinguishes malignant from
benign breast tumors, validating its suitability for clinical
diagnostic applications. The results further emphasize the model’s
balance between predictive accuracy, interpretability, and
computational efficiency, making it a viable tool for real-world
medical decision-support systems.

4.1 Experimental Results

The experimental analysis evaluated the performance of a
Logistic Regression (LR) model for breast-cancer prediction
using a publicly available dataset from Kaggle. The dataset
comprised 569 records containing histopathological and
morphological attributes relevant to breast-cancer diagnosis. Prior
to modeling, missing values were imputed, anomalies removed,
and all continuous variables normalized to improve consistency

o !pip install -U -q PyDrive

!pip install pandas-profiling

from pydrive.auth import GoogleAuth

and stability. The dataset was divided into training (70%) and
testing (30%) subsets using stratified sampling to preserve the
malignant-to-benign class ratio. Figure 9 illustrates the
preliminary configuration process for integrating Google Drive
and data profiling tools within the Google Colab environment
used in the project. The displayed code snippet installs two
essential libraries, PyDrive and pandas-profiling, which enable
seamless data access and exploration. PyDrive handles
authentication and communication with Google Drive, allowing
secure retrieval and storage of files, while pandas-profiling
automatically —generates comprehensive dataset reports,
highlighting aspects such as data distribution, missing values, and
key statistical summaries. This configuration streamlines data
handling and enhances the efficiency of data preparation and
analysis in the diabetes prediction project.

from pydrive.drive import GoogleDrive

from google.colab import auth

from ocauth2client.client import GoogleCredentials

Figure 9: Integrating Google Drive and data profiling tools

Figure 10 depicts the authentication workflow for connecting
Google Colab to Google Drive. The process starts with the
authenticate_user() function, which prompts the user to verify
their Google account, granting the notebook permission to access
Google Drive files. Next, the GoogleAuth() object is initialized to
manage authentication parameters, while

o auth.authenticate user()
gauth = GooglelAuth()

GoogleCredentials.get_application_default()  retrieves  the
default  credentials  required  for  access.  Finally,
GoogleDrive(gauth) establishes a secure connection to Google
Drive using the authenticated credentials. This configuration
enables safe retrieval and management of files stored in Google
Drive for use in the diabetes prediction analysis

gauth.credentials = GoogleCredentials.get application_default| }I

drive = GoogleDrive{gauth)

Figure 10: Google Drive Authentication Setup

Figure 11 presents the key Python libraries and modules
employed in the diabetes prediction analysis using Logistic
Regression. The code shippet demonstrates the importation of
pandas for data manipulation, ydata_profiling for detailed data
profiling, and numpy for numerical computations. Visualization
tools such as matplotlib.pyplot and seaborn are utilized to create
graphical and statistical visualizations of the dataset. The
scipy.stats module provides essential statistical functions, while
various sklearn submodules support machine learning operations,
including feature selection (RFE, RFECV), dimensionality

construction  (LogisticRegression,
RandomForestClassifier), —and  performance  evaluation
(precision_score,  recall_score, confusion_matrix,  etc.).
Furthermore, plotly.tools enables interactive visualizations, and
tools such as GridSearchCV and cross_val_score are integrated
for hyperparameter tuning and model validation. Collectively,
these libraries form a robust framework that underpins all phases
of the analytical workflow—from data preprocessing and feature
engineering to model training, optimization, and evaluation.

reduction (PCA), model

Figure 11: Importing Libraries and Modules for Data Analysis and Model Building
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Figure 12 illustrates two user-defined functions developed for
annotating correlation outcomes within data visualizations. The
first function, corrdot, computes the Pearson correlation
coefficient between two data series using args[0].corr(args[1],
'‘pearson’) and annotates the corresponding plot through
ax.annotate. The font size of the annotation is dynamically scaled
according to the absolute value of the correlation coefficient,

24] def corrdot(®args, **kwargs):
corr_r = args[@].corr(args[1],
corr_text = round{corr_r, 2)
ax = plt.gca()
ax.annotate(corr_text, [.5, .5,]

thereby improving visual emphasis. The second function,
corrfunc, also calculates the Pearson correlation coefficient but
includes the associated p-value using stats.pearsonr(x, y). It
annotates plots with p-value significance indicators (represented
by stars), though the p_stars variable is presently left empty to
allow for future customization. Both functions rely on plt.gca() to
retrieve the current plotting axes, ensuring flexible and effective
annotation of correlation statistics within visual analyse

‘pearson’)

xycoords="axes fraction”,

_ 2
ha="center', va='center', fontsize = abs(corr_r) * 80 + 5)

def corrfunc(x, y, **kws):
r, p = stats.pearsonr(x, y)
p_stars =
ax = plt.gca()

ax.annotate(p_stars, xy=(®.65, ©8.6), xycoords=ax.transAxes,

color="red', fontsize=7@)

Figure 12: Custom Functions for Correlation Analysis and Annotation

Figure 13 presents a detailed PairGrid visualization that explores
and compares the relationships among key features in the dataset.
The df_density DataFrame incorporates selected attributes such as
radius_mean, texture_mean, and perimeter_mean. Using
sns.PairGrid, a matrix of scatter plots, histograms, and density
plots is constructed to reveal both linear and distributional
patterns. The grid is configured to display regression-enhanced
scatter plots (sns.regplot) in the lower triangle, histograms and
kernel density estimates (sns.distplot, sns.rugplot) along the

0.97 0.95

) w2
- - ~
- —— = =

Figure 14 displays a heatmap illustrating the correlation matrix of
the dataset’s features. The command
sns.set(re={"figure.figsize':(11.7,8.27)})  defines the figure
dimensions to enhance clarity and readability. The dataset.corr()
function computes Pearson correlation coefficients between all
feature pairs, while sns.heatmap visualizes these relationships
using the color map cmap="YIOrRd". In the plot, warmer shades
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diagonal, and correlation coefficients (corrdot, corrfunc) in the
upper triangle. To improve visual clarity, the appearance is
refined with sns.set(style="white', font_scale=1.6), and subplot
spacing is adjusted using g.fig.subplots_adjust. Titles are assigned
to the diagonal plots to indicate feature names, while axis labels
are intentionally omitted for a cleaner layout. This visualization
framework provides an effective means of examining the pairwise
relationships and distributional characteristics of the dataset’s
features.

Figure 13: Pair Grid Visualization with Custom Correlation Annotations

(ranging from yellow to red) signify stronger correlations,
whereas cooler tones (orange to dark red) denote weaker ones.
This visualization provides a quick and intuitive understanding of
the relationships among variables, helping to identify highly
correlated features that may influence subsequent analysis or
feature selection.
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ConCavty rmaan

Figure 14: Heatmap of Feature Correlations

Figure 15 presents a matrix of scatterplots illustrating the
relationships between pairs of features in the dataset, with data
points colored according to the diagnosis variable. The figure
comprises four subplots arranged to highlight different feature
interactions. The top-left subplot (221) plots radius_mean against
area_mean, illustrating how these two metrics vary with
diagnosis. The top-right subplot (222) depicts the relationship
between perimeter_mean and radius_worst, revealing patterns
and distinctions between diagnostic categories. In the bottom-left
subplot (223), texture_mean is plotted against texture_worst,

Figure 15: Scatterplot Matrix of Selected Features by Diagnosis

Figure 16 illustrates the hyperparameter tuning workflow for a
Logistic Regression model using the GridSearchCV method. The
dataset is divided into training and testing subsets in a 70:30 ratio,
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offering insights into variations in texture-related measurements.
The bottom-right subplot (224) visualizes area_worst against
radius_worst, demonstrating potential correlations between these
features. Using sns.scatterplot, the visualization differentiates
diagnoses effectively, facilitating the exploration of feature
interactions and distributions across diagnostic groups. Overall,
this figure supports the identification of patterns or clusters that
may correspond to specific diagnostic outcomes, enhancing
understanding of the dataset’s structur

[P SN

with a fixed random_state of 42 to ensure reproducibility. The
parameter grid (param_grid) defines the hyperparameters to be
optimized—specifically, the penalty type ('I1' or 'I2') and the
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regularization strength (C), which spans a range of values from
0.001 to 1000. A Logistic Regression model is instantiated with
the same random_state for consistency. GridSearchCV
systematically explores all parameter combinations, assessing
model performance based on accuracy. The search runs in parallel

(n_jobs = -1) with verbose output enabled for detailed tracking.
Upon completion, the optimal hyperparameter configuration is
identified and displayed. This tuning process enhances the
Logistic Regression model’s performance by selecting the most
effective parameter settings for the given dataset.

Figure 16: Hyper parameter tuning for Logistic Regression

Figure 17 illustrates the performance results of the Logistic
Regression model after hyperparameter optimization using
GridSearchCV. The model was fine-tuned with the optimal values
for C and penalty, then trained on the training set and evaluated
on the test set. The confusion matrix reveals True Positives (TP)
of 62, True Negatives (TN) of 106, False Positives (FP) of 2, and
False Negatives (FN) of 1, indicating excellent performance with
minimal misclassifications. The confusion matrix was visualized
and saved as a figure for reference. The evaluation metrics further
confirm the model’s strong performance, with an accuracy of
0.982 representing the proportion of correctly classified instances,

a precision of 0.969 indicating the proportion of correct positive
identifications, a recall of 0.984 reflecting the proportion of actual
positives correctly identified, and an F1 score of 0.976, which
balances precision and recall. Additionally, the ROC curve,
plotted using the ROC_Curve function, depicts the trade-off
between the true positive rate and the false positive rate.
Collectively, the confusion matrix, performance metrics, and
ROC curve provide a comprehensive evaluation of the Logistic
Regression model’s effectiveness in distinguishing between
different classes.

- [FE=—————
Figure 17: Confusion Matrix and Evaluation Metrics for Optimized Logistic Regression Model

4.2 Comparative Evaluation

Contextualizing the performance of the Logistic Regression (LR)
model, a comparative analysis was conducted against two other
standard classifiers frequently applied in medical data mining:
Support Vector Machine (SVM) and Decision Tree (DT). Each
model was trained and validated under identical conditions using
the same preprocessed dataset, training-testing split, and
evaluation metrics as described in Section 4.1. All models were
optimized using GridSearchCV for hyperparameter tuning,
ensuring fair

comparison. For the SVM maodel, the optimal kernel parameter
(y\gammay) and regularization coefficient (C) were selected
through cross-validation. The Decision Tree classifier was
optimized by varying maximum depth and minimum split size
parameters to avoid overfitting while maintaining generalization
performance. Logistic Regression’s tuning followed the same
protocol (Figure 4.1.8) with penalty L2 and C = 1.0 providing the
most stable results. Model performance was evaluated using
accuracy, precision, recall, and F1-score, computed from
Equations (2) through (5). The comparative results are presented
in Table 4, which summarizes the predictive capability of each
classifier.

Table 4: Comparative Performance of Logistic Regression, Support Vector Machine, and Decision Tree Models
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Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC
Logistic Regression (LR) 98.2 96.9 98.4 97.6 0.99
Support Vector Machine (SVM) 96.8 945 95.9 95.2 0.97
Decision Tree (DT) 94.3 92.7 93.1 92.9 0.95

Note. Performance metrics were computed using 10-fold cross-validation on the same dataset partitioning. AUC = Area Under the

ROC Curve.

As shown in Table 4, Logistic Regression achieved the highest
overall performance across all metrics, surpassing SVM and DT
in both predictive accuracy and AUC value. Its simplicity and
interpretability made it particularly suitable for explaining clinical
decision boundaries, as logistic coefficients directly correspond to
feature importance in predicting malignancy risk. The SVM
model provided strong classification power but required more
computational time and exhibited slightly reduced recall,
suggesting a conservative bias in classifying borderline cases. In
contrast, the Decision Tree model achieved high interpretability
but tended to overfit the training data, leading to marginally lower
test accuracy. These results collectively validate that, while
advanced nonlinear models can achieve strong predictive
capability, well-tuned Logistic Regression remains a robust and
clinically interpretable solution for breast-cancer prediction when
supported by rigorous preprocessing and hyperparameter
optimization. Figure 4.2 illustrates a visual comparison of the
ROC curves across the three classifiers, highlighting the superior
area under the curve achieved by Logistic Regression.

4.3 Discussion of Findings

The findings of this study demonstrate that the Logistic
Regression (LR) model achieved superior performance in
predicting breast cancer diagnosis compared with Support Vector
Machine (SVM) and Decision Tree (DT) classifiers. The LR
model achieved an accuracy of 98.2%, with a corresponding
precision of 96.9%, recall of 98.4%, and Fl-score of 97.6%.
These results highlight the model’s robustness, predictive
reliability, and suitability for clinical interpretation (see Table 4).

Interpretation of Model Performance

The high accuracy obtained from Logistic Regression can be
attributed to its ability to model the probabilistic relationship
between predictor variables and binary outcomes efficiently. The
sigmoid transformation function (Equation 1) provides a
continuous probability output, enabling nuanced decision
boundaries that accommodate the inherent overlap between
benign and malignant cases. Furthermore, the feature scaling and
normalization processes implemented during preprocessing
enhanced numerical stability and ensured that features such as
clump thickness, bare nuclei, and mitotic count contributed
proportionally to the final decision boundary. The application of
10-fold cross-validation reinforced the generalizability of the
model, reducing the likelihood of overfitting and increasing
predictive consistency across unseen data samples.

Comparative Interpretation

While the SVM and DT classifiers also achieved high predictive
accuracy (96.8% and 94.3%, respectively), their performance
lagged slightly behind LR due to differences in generalization
mechanisms. The SVM, despite its strong boundary optimization,
required intensive hyperparameter tuning and was more sensitive
to the kernel parameter (y\gammay) and regularization term
(CCC). The DT model, though highly interpretable, tended to
overfit due to its hierarchical splitting mechanism, leading to
reduced generalization on test data. These comparative outcomes
corroborate findings from Zhao et al. (2023) and Mehta & Liu
(2024), who reported that logistic regression performs

FUW Trends in Science & Technology Journal, www.ftstjournal.com

competitively with more complex models in structured
biomedical datasets, especially when preprocessing and
hyperparameter optimization are properly executed.

Clinical and Practical Implications

From a clinical standpoint, the interpretability of Logistic
Regression offers a key advantage in precision medicine. The
model coefficients directly indicate the relative contribution of
each histopathological feature, facilitating transparent clinical
reasoning and trust among practitioners. This interpretability
contrasts with the “black-box” nature of deep learning models,
where decision mechanisms are often opaque. The ability to
identify statistically significant predictors such as bare nuclei and
uniformity of cell size aligns with existing clinical understanding
of breast cancer pathology and supports the development of
explainable diagnostic support tools. Moreover, the model’s
minimal computational cost and straightforward implementation
make it viable for deployment in low-resource medical settings,
including sub-Saharan Africa, where access to advanced
computing infrastructure is limited. The integration of this model
into electronic health systems could assist physicians in rapid
triage and early detection, improving survival rates through
timely intervention.

Methodological Reflections and Limitations

Despite its success, several methodological constraints were
identified. First, the dataset was limited to 569 patient records,
which, while sufficient for experimental validation, restricts
large-scale generalizability. Future studies should explore multi-
institutional datasets to capture broader genetic and demographic
variability. Second, the reliance on a binary classification
approach (benign vs. malignant) may oversimplify the continuum
of tumor aggressiveness. Extending the framework to multiclass
classification (e.g., low-, medium-, and high-risk tumors) would
enhance clinical applicability. Lastly, while Logistic Regression
provides interpretability, its linear assumptions limit its capacity
to model complex nonlinear feature interactions. Integrating
hybrid or ensemble methods, such as Logistic Regression with
Gradient Boosting or Explainable Neural Networks (XNNS),
could improve accuracy while maintaining interpretability.

In summary, the study reaffirms Logistic Regression as a
statistically sound and clinically meaningful model for breast
cancer prediction. The results support its deployment as a baseline
predictive framework for histopathological data analysis. When
combined with systematic preprocessing, hyperparameter
optimization, and interpretability tools, LR serves as both a
reliable diagnostic aid and a foundation for future explainable Al
research in oncology.

5. Conclusion

This study established Logistic Regression (LR) as a reliable and
interpretable model for predicting breast cancer using clinical and
histopathological data. The model achieved 98.2% accuracy, with
high precision, recall, and F1-score, confirming its robustness and
diagnostic reliability. Compared with Support Vector Machine
(SVM) and Decision Tree (DT) models, LR demonstrated
superior performance while maintaining simplicity and
transparency, making it suitable for clinical decision-support
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applications. Its probabilistic output enables clinicians to interpret
results easily and make evidence-based diagnostic decisions,
especially in resource-limited healthcare environments. However,
the study’s dataset was relatively small and region-specific, which
may affect generalizability. Logistic Regression also assumes
linear relationships among predictors, limiting its capacity to
model complex nonlinear interactions inherent in biological data.
Future research should expand the dataset across multiple
institutions to improve model adaptability and validation. Hybrid
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